Localized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quasilinear elliptic problems
نویسنده
چکیده
Two types of pointwise a posteriori error estimates are presented for gradients of finite element approximations of second-order quasilinear elliptic Dirichlet boundary value problems over convex polyhedral domains Ω in space dimension n ≥ 2. We first give a residual estimator which is equivalent to ‖∇(u − uh)‖L∞(Ω) up to higher-order terms. The second type of residual estimator is designed to control ∇(u−uh) locally over any subdomain of Ω. It is a novel a posteriori counterpart to the localized or weighted a priori estimates of [Sch98]. This estimator is shown to be equivalent (up to higher-order terms) to the error measured in a weighted global norm which depends on the subdomain of interest. All estimates are proved for general shape-regular meshes which may be highly graded and unstructured. The constants in the estimates depend on the unknown solution u in the nonlinear case, but in a fashion which places minimal restrictions on the regularity of u.
منابع مشابه
Sharply localized pointwise and W∞-1 estimates for finite element methods for quasilinear problems
We establish pointwise andW−1 ∞ estimates for finite element methods for a class of second-order quasilinear elliptic problems defined on domains Ω in Rn. These estimates are localized in that they indicate that the pointwise dependence of the error on global norms of the solution is of higher order. Our pointwise estimates are similar to and rely on results and analysis techniques of Schatz fo...
متن کاملPointwise error estimates of the local discontinuous Galerkin method for a second order elliptic problem
In this paper we derive some pointwise error estimates for the local discontinuous Galerkin (LDG) method for solving second-order elliptic problems in RN (N ≥ 2). Our results show that the pointwise errors of both the vector and scalar approximations of the LDG method are of the same order as those obtained in the L2 norm except for a logarithmic factor when the piecewise linear functions are u...
متن کاملWeighted residual estimators for a posteriori estimation of pointwise gradient errors in quasilinear elliptic problems
We present a weighted residual scheme for estimation of pointwise gradient errors in finite element methods for quasilinear elliptic problems. First we define computable residual weights which may be conveniently determined using local ellipticity properties of the underlying differential operator. Using a combination of theoretical and computational results, the resulting a posteriori error es...
متن کاملHigher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces
We define higher-order analogs to the piecewise linear surface finite element method studied in [Dz88] and prove error estimates in both pointwise and L2-based norms. Using the Laplace-Beltrami problem on an implicitly defined surface Γ as a model PDE, we define Lagrange finite element methods of arbitrary degree on polynomial approximations to Γ which likewise are of arbitrary degree. Then we ...
متن کاملA Posteriori Error Estimates for Semilinear Boundary Control Problems
In this paper we study the finite element approximation for boundary control problems governed by semilinear elliptic equations. Optimal control problems are very important model in science and engineering numerical simulation. They have various physical backgrounds in many practical applications. Finite element approximation of optimal control problems plays a very important role in the numeri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 44 شماره
صفحات -
تاریخ انتشار 2006